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How Factor Analysis Can Be Used in Classification

Abstract

This is a methodological study that suggests a taxometric technique

for objective classification of yeasts. It makes use of the minres method

of factor analysis and groups strains of yeast according to their factor

profiles. The similarities are judged in the higher-dimensional space

determined by the factor analysis, but otherwise rely on the simple con-

cept of "most like" or "neighbor." The proposed techniques are illus-

trated by means of an example involving 110 strains of yeast with measure-

ments on 30 variables. An analysis in terms of six factors is obtained

and the six-dimensional factor profiles for the strains are the basis for

determining neighbors and classifying the strains into groups. The auto-

matic procedure leads to 32 groups. Then, by applying the procedures

again, only eight second-order groups, or clusters, emerge.
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How Factor Analysis Can Be Used in Classification
1

Harry H. Harman

I certainly do not consider myself an expert in taxonomy -- much less

in microbiology or yeasts -- but perhaps I can make a small contribution to the

problem of classification of yeasts. Mathematics and statistics -- as tools

dealing with abstractions rather than actual substance -- have such universality

that often their development in one discipline can find ready adaptation and

application to an entirely different discipline. It is in this sense that I

hope my theoretical work in factor analysis and my experience in applying these

methods in psychological and educational measurement will be equally beneficial

in resolving some of the classification problems of concern to this Conference.

Even my brief exposure to this field has shown me that it has been

well plowed by many experienced and devoted workers. Among the many endeavors,

let me mention only a few that are somewhat related to my approach: Hill (1965),

Kockovi-Kratochvilovg (1969), Lance and Williams (1967), Pokorng (1969), Sokal

and Rohlf (1970), Sokal and Sneath (1963). In addition to the work being done in

biology and taxonomy, per se, there is a vast literature in educational and

psychological measurement on the subject of grouping criteria and methods, on

similarity profiles, etc. A quick sampling of such works will illustrate the

point (e.g., Cronbach and Gleser, 1953; Harris, 1955; Johnson, 1967; McQuitty,

1956; Ward, 1963).

My understanding.of the general objective of taxonomy is to effect an

orderly or scientific classification of certain entities (e.g., biological)

according to their presumed natural relationships. More specifically, the task

is to assign each entity or element to a group such that there is a well-defined

basis for "belonging to a group" and that the groups are clearly distinguishable

one from another. It is generally assumed that there are a very large number of

elements in the original set and that the number of groups is small by comparison.

Put simply, then, we seek a means for allocating each element to a group, in some

objective sense, so that the grouping is the best possible.

Paper presented at the International Symposium: Yeasts as Models in

Science and Technics, Smolenice -- Castle near Bratislava, June 1-4, 1971.
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What I intend to do is bring together the technique of factor analysis

and the technique of similarity grouping to provide an objective means of classi-

fying elements (yeasts, in particular). My approach will include some broad

philosophical considerations, some specific mathematical methods, and an indica-

tion of the computer procedures available; it will be illustrated with empirical

data on yeasts made available to me by Dr. Kockova-Kratochvilová. I make no

presumptuous claims for what I propose -- its potential value in your field is

for you to judge in due time.

THEORY AND METHODS

It should be noted from the outset that factor analysis is not presumed

to yield fundamental, primary or ultimate, entities; rather, factor analysis is

a technique that yields descriptive categories or classification schemes for a

set of data. Furthermore, different schemata of classification may appropriately

be made for the same data.

Factor analysis can be of much help to the investigator if he is trying

to understand and describe the relationships among many variables (or characters).

The emphasis here is on the multi-dimensional relationships. An investigator

frequently works in a higher-dimensional space but draws conclusions from rela-

tionships between pairs only, because that can be visualized and handled simply.

To show how factor analysis can be used for classification purposes,

let us start out by defining explicitlysome of the basic concepts, as summarized

in Table 1. The N sampling elements can be represented by N points in an n-space

(a hyper-ellipsoid, corresponding to a scatter plot representing a correlation

between two variables in a plane); or, alternatively, as n vectors in an N-space,

where the correlation between any two variables is given by the cosine of the

angle between them (Harman, 1967, pp. 61, 96-97). Whichever geometric repre-

sentation is assumed, it certainly does not require more than the lesser number

of dimensions to account completely for all the interrelationships of the variables.

For practical purposes it can usually be accomplished with a very much smaller

number of dimensions, or common factors (Harman, 1967, Theorem 4.6, p. 63).
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TABLE 1

Basic Concepts of Factor Analysis and Classification

Concept
Order Example Description

Name Symbol

Individuals
(strains)

Variables
(characters)

Data matrix{

Correlation
matrix

Factors

Factor matrix

Factor scores

Groups

Clusters

i

X.
J

X

Z

R

F
P

A

,.

F
Pi

Gj

C
k

N

n

nxN

nxn

m

nxm

mxN

<N

much
N

less

110

30

30x110

30x30

6 .

30x6

6x110

32

8

Sampling elements or entities

Observed measures

Observed jraw scores: X..31
data Astandardized: zi with M=0,S.D.=1

Relationships among variables

Theoretical constructs (latent variables)

Coefficients of m common factors

Profile of each individual (strain) in terms of
m factors; when no confusion, the hat is omitted

Basic grouping of individuals (strains)

Higher-order grouping of individuals (strains)

The basic model of factor analysis may be put in either algebraic or

matrix form:

(1) z. = a
j1

F
1

+ + a. F + d.U. or Z = AF + DU
jm m J

where d.0 or DU represent the unique (specific and error) portions of each
J

variable and are of little concern to us, while the m common factors are involved

in fitting the correlations among all the variables and are of primary concern.

The factors (F's) are theoretical constructs arrived at indirectly through the known

relationships (the correlations) among the observed variables. The immediate .

object in performing a factor analysis is to get the coefficients of the factors

in (1), that is, the factor matrix A.
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Before continuing with the analysis, I want to stress that when I speak

of factor analysis, I mean factor analysis -- not component analysis.
2

All too

often studies are reported in which the investigator obtains principal components

because such a computer program was readily available, when he should have obtained

(or thought he was obtaining) factors according to the model (1). Hopefully, by

using the model (1), we eliminate extraneous variance (error and specific) that

would muddy up the explanation of relationships among the characters, and the

consequent grouping of strains.

I also want to say a few words about which correlations are used in

factor analysis. In the area of numerical taxonomy, Sokal and Sneath (1963,

p. 208) note that "...in work done so far usually fewer OTU's [operational taxo-

nomic units] than characters have been measured. It has been simpler, because of

limited capacity of computers, to calculate correlations among OTU's than corre-

lation among characters. As computational equipment gets better and faster, we

shall be able to attack these problems more efficiently." That time has arrived.

We do have the necessary computational equipment, and there is no longer any reason

for compromising the statistical methods. By working with the correlations among

the characters we avoid problems of deficient rank that would arise in a matrix of

correlations among the strains when these exceed the number of characters. More

importantly, factor analysis of the characters requires knowledge of the characters

for scientific interpretation; factor analysis of the OTU's (or strains) requires

knawledge about these elements themselves. But a major purpose of classification

is to be as objective as possible in allocating the elements to groups. The

principle of objectivity seems to be served better by determining the factors from

the relationships among the characters.

A general description of the analysis proposed may be put in the

geometric terms introduced above. Assuming a reasonably good fit of the N

points in the n-space by the m common-factor space, then each of the N points

can "be expressed in terms of m coordinates, that is, by an m-order vector. Of

course, m is much smaller than n. This reduction -- describing the strains in

terms of m factors instead of in terms of the n observed characters -- can be

2For further discussion of the distinction between the classical factor

analysis model and the component analysis model see Harman (1967), pp. 14-16,

136-137, 346-348.
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accomplished by conventional factor analysis of the n characters and getting

factor measurements, or scores, for each of the N strains. Finally, the N

strains are classified into groups according to their similarities as determined

by their factor profiles in the m-space. An advantage of the use of factor

analysis in this way is that the characters themselves are structured so that the

groups into which the strains are classified can be given special interpretation.

We come to the fundamental question: how is the factor matrix A

determined? There are several procedures (other than component analysis) that

are suitable. I prefer the "minres method," which is designed to give the best

fit to the observed correlations, or to give minimum residual errors. Specifi-

cally, the minres method determines A under the condition (Harman, 1967, p. 189);

n n-1

(2) f(A) = E E (r., - E a4 au )
2
= minimum.

k=j+1 j=1 -11` p=1 JP AP

It should be noted that this expression depends on the number of common factors

m. All procedures for getting factor solutions require a priori choices of

either the communalities or the number of common factors. While the minres

method requires a decision on m (and the computer program permits several values

to be tried), the communalities are obtained as a by-product of the method. The

mathematical theory for minimizing the objective function (2) has been developed

(Harman, 1967, pp. 190-199) as well as an efficient computer program for the cal-

culation of A.

After the common-factor space has been determined by the minres method,

it is usually advisable to select another frame of reference for purposes of

interpretation. The varimax method (Harman, 1967, pp. 304-313) can serve that

purpose. At this stage, the structure of the characters can be used to provide

meaning for the factors which emerge as theoretical constructs. Although not

directly measurable, the factors scores can be estimated (Harman, 1967, pp. 350-354)

for each individual or element. These profiles of factor scores serve as the

basis for judging similarities among the elements.

Then the actual task of classification according to this basis must be

performed. In order to group elements (e.g., strains of yeast) according to

their similarities, there immediately arises the question of the precise meaning
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of "similarity." It would seem natural to accept two elements as sindlar if

they resembled one another or were close to one another in some sense. When

the elements are described in terms of some quantitative characteristics the

natural approach is to compare each element with every other one and to say

that those with profiles closest to one another are "similar." A measure of

closeness frequently employed by researchers is that of "distance." Thus, if

two elements are represented by two points in the m-dimensional space, the

square of their Euclidean distance is simply the sum of squares of the differ-

ences between corresponding numbers in their profiles. Then small distances

can be used as a measure of similarity, while large distances would indicate

dissimilarity. But care must be taken that all variables are measured in

essentially the same scale; variables measured on large scales (i.e., with

large standard deviations) could influence distance measurements unduly. This

is avoided when factor scores are used since they are essentially equivalent

scales.

The classification procedure that I will employ is due to Wingersky

(1969) and rests on the basic premise that a given individual and the individ-

ual most like him should be classified in the same group. For the similarity

basis it is easier to define the complement, or dissimilarity, as given by the

squared Euclidean distance:

(3) D.. =
ij

(F - F )
2

Pi Pip = 1

j = 1, 2 ,..., N

where the hat has been left off the symbol for the factor scores of elements

i and j . Of course, the smaller this value the more similar are the two

elements. While the distance itself (instead of its square) might be used, I

was willing to have the dissimilarities appear exaggerated in order to show the

logical cost of grouping.

It is important to note that the "most like" relationship between two

elements is not reciprocal -- the individual most like A may be B but this does

not necessarily mean that the individual most like B is A. To illustrate this

point, suppose three towns A, B, and C are situated so that B is 10 km. east of

A and C is 5 km. south of B, while no other town is as close as 10 km. to any of
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these. Now, using the term "nearest" or "neighbor" in place of "most like,"

we may say that B is nearest or is the neighbor of A, but A,is not the neighbor

of B; C is the neighbor of B and B is the neighbor of C.

If we were to classify towns on the basis of their

similarity -- a town and its neighbor should be in the AjB
same group -- then A and B would be placed in the

same group and B and C would be in the same group, and

hence A, B, and C must be in the same group. We shall

represent the relationship "B is the neighbor of A" by

B 4'A. Hence, the illustration of the three towns may

be represented in the sketch.

Using our definition of similarity (i.e., the smallness of Dij), a

list of all elements can be formed showing the neighbor for each one. Then the

classification procedure, which has been programmed by Wingersky (1970), can be

applied. In essence, it works like this: the first element and its neighbor

are taken to start the first group; additional elements are added to this group

by scanning the list for elements that have neighbors or are neighbors of elements

already in the group; the scanning of the list is repeated until no new elements

can be added in accordance with the foregoing rule. After one group is closed,

the remaining elements are treated as a new sample with one element and its

neighbor selected to initiate a new group, additional elements are added by

scanning the remaining list until a second group is formed. Tills process is

continued until all elements have been assigned to groups.

RESULTS

It should be clear that my presentation is methodological rather than

substantive. Nonetheless, I want to illustrate the methods with an example in

as much detail as limited space will allow. The example is taken from some

work in which Dr. Kockovg-Kratochvilovg and I are collaborating. That work will

appear as a report on 110 strains of genus Säccharomyces, in which the detailed

statistical procedures and results will be given. I had no previous classifi-

catory knowledge about these strains in arriving at an entirely objective grouping.
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The data seemed to be meaningful and therefore worthy of statistical analysis.

As noted by Sokal and Rohlf (1970, p. 316): "When one performs a factor analysis

of correlations of characters within a single homogeneous population, factors may

represent various physiological and growth trends found within the population."

The suitability of our data was indicated in a letter from Dr. Kockovd-Kratochvilovd,

... in the case of Säccharomyces, where the species are very relative and the

genus seems to be homogeneous ...." Her further assurance that she "... selected

the taxonomic characters very carefully" made the objective analysis reasonable.

Thirty characters were measured for each of the 110 strains. Space

restrictions will not permit the presentation of the 30 x 110 data matrix, nor

the 30 x 30 correlation matrix, nor the 30 x 6 minres factor matrix. The final

30 x 6 varimax factor matrix is presented in simplified fashion in Table 2.

Looking down one column at a time, it should be possible to assign a name or

describe each of the factors on the basis of the very high positive (+ +) and

very high negative (--) weights; the smaller weights (+ or -) should fit in

consistently. The blank entries represent insignificant weights and probably

should not influence the description of a factor, but again should be consistent

with it. The interpretation of these factors is left for our later work.

The structure of the characters can be inferred from this table. Aside

from identifying those characters primarily responsible for the makeup of the

factors, certain statistical properties about the characters themselves become

apparent. Some of the characters are factorially simple (e.g., 3, 6, 13, 17, 30)

while others are complex (e.g., 4, 8, 20). Characters that have very little in

common with others in the study, such as 10 and 11 (indicated by their low

communalities), might be eliminated in further investigations aimed at gaining a

better understanding of these strains of yeast through statistical analysis.

The next step in the analysis produces a factor-score profile for each

strain (again, space does not permit the presentation of this 6 x 110 matrix).

Also calculated at this time are the regression equations which yield these

profiles and the multiple correlation of each factor as predicted from the 30

variables. Once the factor profiles are available, the squared distance between
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TABLE 2

Prominent Weights on Six Varimax Factors
(Initial solution: Minres)

Character
F F

2
F
4

F
5

F
6

Commu-
nality

1

2

3

Mean of lengths of cells
Mean of widths of cells
Quotient surface/volume of cells

++
++

.71

.86

.83

4 Degree of raffinose fermentation + + .65
5 Galactose fermentation 44 .52
6 Fermentation types (maltose and sucrose) ++ .62

7 Growth at 42 °C .27
8 Osmophily + + .50
9 Autoproteolytical activity .37

10 Giant colony character .08
11 Radial growth rate at 20 C after 7 days .05
12 Pseudomycelium formation + + .35

13 Trehalose assimilation -H- .70
14 Inulin assimilation + .23
15 Mannitol assimilation 44 .62

16 Sporulation activity .27
17 Requirement of vitamins -H- .49
18 Sensitivity to lactic acid .58

19 Lactic acid dehydrogenase activity .40
20 Sensitivity to actidione .49
21 Sedimentation rate of cells _ .42

22 Tolerancy to ethanol + + .44
23 Galactose respiration quotient, RQ .29
24 Glycerol assimilation .20

25 Maltose utilization rate .45
26 Sucrose utilization rate .27
27 Agglutination with the serum against .32

SAccharomyces cerevisiae
28 Lysin assimilation .52
29 Catalase activity .55
30 Succinic acid dehydrogenase activity 44 .62

Contribution of factor 4.70 2.28 1.97 1.82 1.46 1.44 13.67

Key: ++ a > .60
+ .60 > a > .30
- -.30 > a > -.60

a < -.60

11
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and every other one is readily computed; a list of all the strains,

neighbor of each, is formed; and the classification procedure groups

The results are still too lengthy to include here, but one subset

to clarify the nature of the analysis.

In Table 3 are exhibited twelve strains, with the neighbor of each,

and four groups into which they are classified. The six-factor-score profile is

shown for each strain and for the centroid of each group. The centroid profile

may be considered as representing the group. (The last line of the table will be

explained shortly.) Also included in the table are (1) the squared distances between

every pair of strains within each group, (2) the squared distance between each

strain and the centroid of its group, and (3) a measure of cohesiveness of the

grouping. For the latter measure it is easier to define the complement, or

separateness, simply by the average of all the squared distances among all pairs

within a, group GL, namely:

(4) S. E D /v .

p<ci J

and v =
j

1 n (n - 1) ,

2 j j

wherepandgrangeovertheelementsinG.and n. is the number of elements in

this group. Here again, the smaller the value of Si the more cohesive are the

elements in the group.

The information of Table 3 may be shown graphically only in rough fashion,

as in Figure 1. The true relationships of the analysis are in a six-space and so

we can't visualize it in the ordinary way. The actual squared distances (D
ij

)

between the strains within each group are given in Table 3 and the squared distances

between the group centroids are shown in the little table in the figure. What

appears in Figure 1 is a projection of the six-space configuration on a plane. Only

the first two coordinates of each six-component vector is used. Therefore, the

squared distances (D
ij

) actually used in the analysis will not agree with corres-

ponding measures in the plane. It is all right to use such graphs for general

impressions, but not to draw precise inferences.

12



TABLE 3

Classification of Strains within Groups of
Cluster 2, including Squared Distances

Strain
.0
.0
OD

Factor Profiles Squared Distances

within GroupsF
3

F
4

2:(21-2-1)
4:(21-2-3)
5:(21-2-4)

69:(35-6-2)

Group Centroid

3:(21-2-2)
32:(21-23-1)
74:(35-9-1)

Group Centroid

26:(21-22-1)
29:(21-22-4)
30:(21-22-5)

Group Centroid

27:(21-22-2)
28:(21-22-3)

Group pentroid

Cluster 2
Centroid

69
5

4

5

74

3

3

30

30

26

28

27

Group 2

-.86
-1.25
-1.01
-1.24

.03

-.09
-.12
-.35

-.14
.02

.07

-.42

-.27
-.67

-.50
-.74

-1.88 .23
-1.68 -.92
-1.68 -.75
-1.81 -.34

1.70

1.14

.91

.12

.61

S
2

84

59

-1.09 -.13 -.12 -.55 -1.76 -.45 .62 .29 .14 .21

Group 3

-1.70
-1.82
-.95

.95

.38

.44

-.37
-1.05

.09

-.67
-.30
-.69

-.63 -1.03
-1.07 -.23
-.55 -.67

1.76
1.20 2.69

S
3

1.88

-1.49 .59 -.44 -.55 -.75 -.64 .36 .86 .67

Group 8

-2.47
-2.50
-2.63

-.36

-.87
-.42

-.71
-1.61
-1.53

-.05

.78

.30

.82 -1.65

.73 -1.18

.76 -2.08
2.00
1.01 1.27

S
8

1.43

-2.53 -.55 -1.28 .35 .77 -1.63 .53 .62 .28

Group 9

-1.81
-2.00

-.78
-.50

-.91
-.37

-.01
-.15

-.23 -.98
-.25 -.46 .70

.70

-1.91 -.64 -.64 -.08 -.24 -.72 .17 .17

-1.69 -.14 -.58 -.25 -.62 -.84

Squared Distances

Grp

2
S = 5.02,

3 1.85 X
8 12.22 7.18 3
9 3.81 2.21 2.84

-3.0

2.11 .74 4.30 .49

-2.0

3

Cz

1.0

'74

-1.0

0 F1

69

-1. 0

Fig. 1.--Projection of 12 strains of Cluster 2 in the plane of the first
two factors, showing neighbors, group centroids, and cluster
centroid 13
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For the total sample of 110 strains 32 groups resulted, which are

shown with their (centroid) profiles in Table 4. The classification procedure

tends to produce too many groups. If one is willing to make a compromise --

some loss in cohesiveness in order to gain simplification in the descriptive

model -- the method can be applied again. This time, to distances between

(centroids of) groups instead of to distances between strains. The results of

this "higher-order" classification are being called "clusters."

When the classification procedure was applied to the 32 groups as the

sample elements, eight clusters emerged as shown in Table 5. Following the

factor profiles are the numbers of the groups and their neighbors (by the arrow

convention introduced above). The actual numbers of the strains can be read

from Table 4 for the groups in each cluster. Finally, the squared distances

between each pair of clusters is shown in the right-hand part of Table 5.

Earlier, the meaning of the last line of Table 3 was postponed. Now

that we have defined second-order classification, we can understand the example

of Table 3, which gives such details of Cluster 2 as the factor score profile

for each of its 12 strains and for each of its four groups. The factor profile

for the entire Cluster 2, shown in the last line is, of course, the same as that

shown on the second line of Table 5.

We might take a moment to look at Cluster 2 in relation to the other

clusters in Table 5. Its neighbor (closest cluster) is C
4
with DCC = 4.50,

24
and the farthest cluster is C

7
with D

C2C7
= 14.02.

The measure of separateness, formula (4), can be applied to the elements

(i.e., groups) of a cluster. Thus, for Cluster 2 the degree of cohesiveness is

given by the .7alue 5.02 (shown in the table in Figure 1). Of course, this value

is larger than the Si values for the groups in this cluster. When the measure of

separateness is computed for the clusters as elements, the value S = 8.14 is

obtained -- an exceedingly high value as we should expect. This is a kind of

"third-order" classification of all eight clusters into a single family.

A wealth of information is summarized compactly in Tables 2 through 5.

Space limitations precluded any elaboration of the results. Careful study by those

concerned with statistical methods of classification may find the methods and

means of display quite rewarding.

14
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TABLE 4

Classification of 110 Strains into 32 Groups,
Showing Factor Profiles for Group Centroids

Group
No. of
Strains

Factor Profile
Strains in Group

F
1

F
2

F
3

F
4

F5
6

1 9 -.12 -.01 1.03 -.21 -.13 .48 1,7,12,19,20,21,23,36,37
2 4 -1.09 -.13 -.12 -.55 -1.76 -.45 2,4,5,69

3 3 -1.49 .59 -.44 -.55 -.75 -.64 3,32,74

4 4 -1.22 -.13 .65 .03 1.07 -.20 6,14,25,64

5 2 -.18 -.26 .06 -.05 .09 1.90 8,9

6 3 -.75 -.58 1.33 .44 .82 .65 10,15,16
7 6 -.45 -.32 1.79 -.21 .41 .46 11,13,17,18,22,24
8 3 -2.53 -.55 -1.28 .35 .77 -1.63 26,29,30

9 2 -1.91 -.64 -.64 -.08 -.24 -.72 27,28

10 2 .20 .08 .83 -.23 .40 -.78 31,54

11 3 -.37 -.14 -.37 .84 -.72 -.04 33,41,44
12 2 -1.45 .34 .10 -1.69 1.07 -1.14 34,55

13 3 .55 .10 .21 .61 -.11 -.25 35,48,49

14 4 -.29 3.29 -.32 .12 .41 -.32 38,51,52,65

15 4 .44 .09 -.42 .36 .56 1.54 39,40,42,53

16 3 .04 -.48 -.61 .09 -1.53 .06 43,45,46

17 3 .17 -.32 -.79 .31 -.35 .57 47,50,72
18 3 .05 2.89 -.52 .02 -.95 .92 56,70,73
19 5 1.04 -.18 .84 .39 -1.23 -.92 57,59,92,94,95
20 2 .18 1.33 -.41 .07 -.05 .68 58,71

21 5 .10 -.52 -1.12 -.97 .99 .61 60,75,76,78,79
22 3 .53 -.30 .12 -.21 -.39 .84 61,62,66

23 4 -.14 -.37 .36 .74 .62 .56 63,104,105,106
24 2 -1.23 -.85 -.79 .54 -1.69 .65 67,68

25 2 .84 -.92 -1.35 -.86 .19 1.68 77,82

26 2 .74 -.81 -1.19 -1.26 .68 1.20 80,81

27 4 1.37 -.28 -.34 -2.26 .26 -.95 83,85,86,88

28 2 1.65 -.04 -.91 -1.74 -.05 -1.65 84,87

29 2 1.05 -.46 -.03 .89 -1.16 -.61 89,91
30 2 .34 -.46 .32 .68 -1.14 -.59 90,93
31 6 .90 -.34 -.46 .97 .49 -.71 96,98,99,101,102,103
32 6 1.23 -.12 .01 1.40 .97 -.79 97,100,107,108,109,110
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DISCUSSION

In this paper we stressed the necessity for distinguishing between (1)

the basis for judging similarity of elements and (2) their actual classification

according to a designated basis. The basis proposed was the factor profiles and

the classification procedure required that a given element and another most like

it be classified in the same group. The very concept of grouping arises out of

the scientific aim of deriving underlying orderliness in otherwise diverse obser-

vations. Recognizing that observed data are fallible, we believe simple models

provide more appropriate explanations than accepting every fine difference as

signifying something "real." Thus, we seek a simpler explanation for all the

distinctions among the 30 separate measurements of the 110 strains (3300 original

observations). The analysis first reduced the 30 characters to six hypothetical

constructs (leading to 110 x 6 = 660 factor measurements which account for 45%

of the total variance). Then the 110 strains were put into 32 groups and finally

into eight clusters (8 x 6 = 48 or about 1.5% of the original number of categories).

Of course, at each stage a simpler model is introduced, which might be viewed as

smoothing" of the data.

The classification of yeast strains into groups and clusters forms a

hierarchical arrangement and might therefore be displayed as a dendogram. However,

such a representation in the plane cannot show the distances among the elements

when the basis for classification consists of six-dimensional profiles. Even in an

excellent study (Pokorng, 1969) in which yeast strains were analyzed in terms of

five common factors, the attempt to group the strains according to their clustering

in a plane of two factors at a time could be misleading.

Finally, may I say, the classification of yeasts into groups and clusters,

as demonstrated in this paper, was done more "objectively" than I would ordinarily

recommend. I was 6000 kilometers from Dr. Kockovfi-Kratochvilovg and could not have

the benefit of frequent consultation about the meaningfulness of the classifications.

It is perfectly good science -- I would say, imperative -- that the classifications

be inspected for substantive sense, and adjustments made accordingly. Science should

not be blind.
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